IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

DENDROGRAM STUDIES OF WATER QUALITY PARAMETERS OF WATER SAMPLES FROM POZHIKKARAI TO MANAVALAKKURICHI IN KANYAKUMARI DISTRICT

Reena M.V. 1, Amalraj A^{2*}, Ajitha R.³, Nirmala Louis C⁴,

¹Research Scholar, Reg. No. 19133282032008 Department of Chemistry, Women's Christian College Nagercoil-629 001, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Tirunelveli

²Associate Professor of Chemistry, St. Jerome's College Anandhanadarkudy-629 201, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Tirunelveli

³Assistant Professor, Department of Chemistry, Women's Christian College Nagercoil-629 001, Kanyakumari District, Tamil Nadu, India.

⁴Assistant Professor, Department of Physics Holy Cross College (Autonomous) Nagercoil-629 001, Kanyakumari District, Tamil Nadu, India.

ABSTRACT

A methodical study has been carried out to explore physico-chemical parameters of drinking water from well and bore hole in and around the villages from Pozhikkarai to Manavalakurichi of Kanyakumari District. Water samples from well and bore hole in four sites namely Pozhikkarai, Periyakadu, Muttom, Manavalakurichi were collected in pre monsoon and post monsoon seasons during 2019 ad 2020 and analyzed for temperature, pH, turbidity, alkalinity, hardness, salinity, fluoride, chloride, total dissolved solids, dissolved oxygen, BOD, electrical conductivity, total nitrogen, nitrate, sulphate, ammonia, phosphate, total phosphorus, sodium, potassium and oxidation & reduction potential. The physico-chemical parameters were analyzed and the results were compared with water quality standards described by WHO. Statistical techniques, calculation of basic statistics, Correlation matrix, Hierarchical Cluster analysis were simultaneously applied to the physico-chemical parameters of water samples taken from in different sites. The above study will be useful

to know the water quality and their fitness for drinking purposes at various stations undertaken. Overall water quality was found satisfactory for drinking purpose without prior treatment.

Key Words:

Bore hole, Shallow well, Pozhikarai, Periyakadu, Muttom, Manavalakurichi, physic-chemical parameters, basic statistics, Correlation matrix, Dendrogram .

INTRODUCTION

Surface waters are primary and limited water resources to meet agricultural industrial and domestic water needs of human and living beings. Drinking water or potable water is defined as that having acceptable quality in terms of its physical, chemical, bacteriological and acceptability parameters so that it can be safely used for drinking and cooking^[1]. Polluted waters contain significant levels of pollutants, usually at levels above WHO certified drinking water quality standards and these are able to cause significant problems when ingested by humans^[2]. The natural cleansing ability of oxygen contained in the water is compromised and the water can no longer breakdown organic pollutants^[3]. According to Buchholz^[3], point sources are those that come from industrial facilities and municipal sewage systems. Thus, they can be said to be pollution that can be traced to a particular source. Cairncross and Cliff^[4] have shown that soakage pits and pit latrines can extend their influence on ground-water quality up to 10m or more as groundwater flow is either lateral or vertical. Additionally, filtration does not occur during lateral flow and could earry feacal pollution for much longer distances possibly resulting in contamination of well water with pathogens^[5,6]. Pye and Patric^[7] have shown that land disposal of sewage sludge, illegal dumping of septic tank pumpage, improper toxic waste disposal and run off from agricultural operations all contributed to surface and ground water contamination with chemicals and microorganisms.

MATERIAL AND METHODS

Physico-Chemical Analysis

Samples collected from all the stations were analyzed for physico-chemical analysis using standard methods^[8]. The following physico-chemical parameters such as temperature, pH, turbidity, alkalinity, hardness, salinity, fluoride, chloride, total dissolved solids, dissolved oxygen, BOD, electrical conductivity, total nitrogen, nitrate, sulphate, ammonia, phosphate, total phosphorus, sodium, potassium and oxidation & reduction potential have been analyzed. The temperature of the water samples was measured by mercury thermometer. The pH measurement of the water samples was carried out using digital pH meter (Elico pH-13 model). A conductivity meter was used to measure EC. Volumetric method using sulfuric acid as titrant and phenolphthalein and methyl orange as indicators was used to determine alkalinity. EDTA (complexometric)

method was used to determine calcium, magnesium and total hardness titremetrically. Flame photometer was used to identify sodium and potassium. Mohr's method was used to measure chloride by titration with silver nitrate. UV-Vis Spectrophotometer was used to analyze nitrate. Salinity was estimated by Argentometric titration method. The dissolved oxygen was estimated by Winkers method. The findings of the present investigation were summarized and compared with standards [9,10].

Statistical Analysis

The correlation between various physic-chemical parameters of water samples analyzed statistically conducting basic statistics (mean, standard deviation (SD), median, minimum, maximum, variance (V). Kurtosis (K), Skewness (S), Hierarchical cluster analysis, Pearson correlation analysis with the help of SPSS (Statistics Package for the Social Sciences) software (Windows version 19).

Descriptive statistics in the forms of mean, SD, median, minimum, maximum, variance (V), Kurtosis (K), Skewness(S), standard error of kurtosis (SEK), standard error of skewness (SES) were calculated and summarized in Tabular forms in Tables 2, 5, for well water and Table 8, 11 for bore hole water samples respectively.

Dendrogram studies

Cluster analysis (CA) [11,12] was used for multivariate modeling of the input data. The main goal of the Hierarchical Agglomerative cluster analysis to spontaneously classify data into groups of similarity (cluster) searching objects in the n-dimensional space located in closest neighbourhood and to separate a stable cluster from other clusters. In figure 1 to 8, the hierarchical dendrogram for the clustering of determined physical and chemical parameters for all the studied stations is plotted (Ward's method of linkage, squared Euclidean distance as similarity measure, standardization of the input data). For clustering altogether 22 physical and chemical parameters were chosen. It could be concluded that the one big cluster and three small clusters are formed additionally sub clusters are also formed. Statistical Analysis of Ground water quality parameters in Erode District, Tamilnadu was studied by M.Jamuna et al[13]. Spatial and Temporal changes in water quality at AsiRiver using Multivariate Statistical Techniques was studied by Ece et al[14]. Statistical assessment of water quality parameters for pollution source identification in Bektas Pond was extended by Aydin et al[15].

The **Pearson correlation analysis** was performed for measured parameters to determine the relation between these variables and given in Tables 3, 6, 9, 12. A correlation analysis is a bivariate method applied to describe the degree of relation between two hydro chemical parameters. A high correlation coefficient (near 1 or -1) means a good relationship between two variables and its value around zero means no relationship between them at a significant level of <0.05. More precisely it can be said that parameters showing coefficient >0.7 are considered to be strongly correlated where as coefficient between 0.5 and 0.7 shows moderate correlation.

RESULT AND DISCUSSION

For our research studies, the name of the villages are abbreviated, Pozhikari as PO, Perivakadu as PE. Muttom as MU, Manavalakurichi as MA. The water samples drawn during the period 2019 in pre monsoon season are abbreviated as PRA19PO, PRA19PE, PRA19MU and PRA19MA. The water samples drawn from well are abbreviated as WPRA19PO, WPRA19PE, WPRA19MU and WPRA19MA. The water samples drawn during the period 2020 in pre monsoon season are abbreviated as PRA20PO, PRA20PE, PRA20MU and PRA20MA. The water samples drawn from well are abbreviated as WPRA20PO, WPRA20PE, WPRA20MU and WPRA20MA.

The water samples drawn during the period 2019 in post monsoon season are abbreviated as PON19PO, PON19PE, PON19MU and PON19MA. The water samples drawn from well are abbreviated as WPON19PO, WPON19PE, WPON19MU and WPON19MA. The water samples drawn during the period in pre monsoon season are abbreviated as PON20PO, PON20PE, PON20MU PON20MA. The water samples drawn from well are abbreviated as WPON20PO, WPON20PE, WPON20MU and WPON20MA.

The water samples drawn from bore hole are abbreviated as BPRA19PO, BPRA19PE, BPRA19MU and BPRA19MA. The water samples drawn during the period 2020 in pre monsoon season are abbreviated as PRA20PO, PRA20PE, PRA20MU and PRA20MA. The water samples drawn from bore hole are abbreviated as BPRA20PO, BPRA20PE, BPRA20MU and BPRA20MA.

The water samples drawn during the period 2019 in post monsoon season are abbreviated as PON19PO, PON19PE, PON19MU and PON19MA. The water samples drawn from bore hole are abbreviated as BPON19PO, BPON19PE, BPON19MU and BPON19MA. The water samples drawn during the period 2020 in pre monsoon season are abbreviated as PON20PO, PON20PE, PON20MU and PON20MA. The water samples drawn from bore hole are abbreviated as BPON20PO, BPON20PE, BPON20MU and BPON20MA.

Table 1: Comparison of water quality parameters of well water in Pre monsoon and Post monsoon season during 2019

					Sampl	e code			
S.No	Parameters	WPRA19PO	WPRA19PE	WPRA19MU	WPRA19MA	WPON19PO	WPON19PE	WPON19MU	7.9 WPON19MA
1	рН	7.4	7.4	7.9	7.9	7.4	7.4	7.3	7.9
2	Turbidity (NTU)	8	8	8.0	8	7	8	7	8.1
3	Dissolved oxygen (DO) (ppm)	7	7	8	8	7	8	7	7
4	Biological Oxygen Demand (BOD) (ppm)	8	9	6	8	8	9	8	8
5	Hardness Mg (mg/L)	4.9	4.9	4.9	4.9	4.8	4.9	4.8	4.8
6	Sulphate (mg/L)	7	0.8	6	0.8	6	0.9	6	7.4
7	Total Nitrogen (mg/L)	4.9	4.9	4.9	4.9	4.8	4.9	4.8	4.8
8	Nitrate (mg/L)	0.2	0.3	0.2	0.2	0.2	0.9	0.2	0.4
9	Ammonia (mg/L)	0.9	0.9	0.9	6	0.8	0.2	0.8	0.3
10	Phosphate (mg/L)	0.3	0.4	0.8	0.8	0.2	0.3	0.2	0.2
11	Total Phosphorous (mg/L)	0.4	0.5	0.3	0.2	0.3	25.6	0.3	0.3
12	Fluoride (ppm)	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7
13	Chloride (ppm)	241	250	290	290	240	214	240	180
14	Total dissolved solids (TDS)(ppm)	540	590	590	570	581	580	580	620
15	Electrical conductivity (Mics/cm)	621	620	620	630	620	670	620	620
16	Oxidation-Reduction Potential (mV)	711	711	710	719	711	710	710	562
17	Temperature (°C)	28	29	29	28	30	28	27	28
18	Sodium (mg/L)	25.1	24.6	26.6	25.3	25.6	25.1	25.6	25.6
19	Potassium (mg/L)	16.1	17.3	16.3	16.1	16.4	16.3	16.3	12.2
20	Alkalinity (mg/L)	164	175	164	166	165	169	165	190
21	Hardness Ca (mg/L)	50	60	60	51	50	50	50	60
22	Salinity (ppm)	96	96	96	96	95	96	95	110

Table 2: Descriptive Statistics of water quality parameters of well water in Pre monsoon and Post monsoon season during 2019

	N	Range	Minimum	Maximum	Mean	Std. Deviation	Variance	Kurl	osis
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error
Temp	8	3	27	30	28.38	.916	.839	.421	1.481
рH	8	.6	7.3	7.9	7.575	.2712	.074	-2.180	1.481
Turbidity	8	1.1	7.0	8.1	7.763	.4719	.223	026	1.481
Alkalinity	8	26	164	190	169.75	8.972	80.500	4.217	1.481
HardnessCa	8	10	50	60	53.88	5.083	25.839	-2.234	1.481
HardnessMg	8	.1	4.8	4.9	4.863	.0518	.003	-2.240	1.481
Salinity	8	15	95	110	97.50	5.071	25.714	7.813	1.481
Fluoride	8	.1	.7	.8	.775	.0463	.002	.000	1.481
Chloride	8	110	180	290	243.13	36.447	1328.411	.201	1.481
TDS	8	80	540	620	581.38	22.316	497.982	2.267	1.481
DO	8	1	7	8	7.25	.463	.214	.000	1.481
BOD	8	3.0	6.0	9.0	8.000	.9258	.857	3.500	1.481
EC	8	50	620	670	627.63	17.468	305.125	7.043	1.481
TotNitrogen	8	.1	4.8	4.9	4.863	.0518	.003	-2.240	1.481
Nitrate	8	.7	.2	.9	.325	.2435	.059	5.885	1.481
Sulphate	8	6.6	.8	7.4	4.363	2.9664	8.800	-2.151	1.481
Ammonia	8	5.8	.2	6.0	1.350	1.8996	3.609	7.496	1.481
Phosphate	8	.6	.2	.8	.400	.2563	.066	438	1.481
Totphosphorus	8	25.4	.2	25.6	3.488	8.9352	79.838	7.998	1.481
Sodium	8	2.0	24.6	26.6	25.438	.5829	.340	2.067	1.481
Potassium	8	5.1	12.2	17.3	15.875	1.5332	2.351	6.684	1.481
ORP	8	157	562	719	693.00	53.018	2810.857	7.924	1.481
Valid N (listwise)	8								

Figure 1: Cluster Diagram of water quality parameters of well water in Pre monsoon and Post monsoon season during 2019

Figure 2: Dendrogram of water quality parameters of well water in Pre monsoon and Post monsoon season during 2019

Table 3: Pearson Correlation Coefficient (r) of water quality parameters of well water in Pre monsoon and Post monsoon season during 2019

										Co	rrelations ^a												
		Temp	pН	Turbidity	Alkalinity	HardnessCa	HardnessMg	Salinity	Fluoride	Chloride	TDS	DO	BOD	EC	TotNitrogen	Nitrate	Sulphate	Ammonia	Phosphate	Totphosphoru s	Sodium	Potassium	ORP
Temp	Pearson Correlation	1	.043	095	091	.257	.038	169	.590	.217	.125	.758	168	204	.038	176	015	119	.122	163	.130	.252	.159
	Sig. (1-tailed)		.460	.411	.415	.270	.465	.344	.062	.303	.384	.015	.345	.314	.465	.338	.486	.389	.387	.350	.379	.274	.354
pH	Pearson Correlation	.043	1	.539	.343	.526	.127	.519	057	.226	.427	.171	569	171	.127	162	.070	.452	.657	266	.522	534	454
	Sig. (1-tailed)	.460		.084	.202	.090	.382	.094	.447	.295	.146	.343	.071	.343	.382	.351	.435	.130	.038	.262	.092	.086	.129
Turbidity	Pearson Correlation	095	.539	1	.389	.498	.695	.373	.278	001	.076	343	.000	.251	.695	.320	303	.159	.449	.205	160	260	275
	Sig. (1-tailed)	.411	.084		.171	.105	.028	.181	.253	.500	.429	.203	.500	.274	.028	.220	.233	.354	.132	.313	.352	.267	.255
Alkalinity	Pearson Correlation	091	.343	.389	1	.607	331	.920	533	709	.762	361	.275	074	331	.265	.100	250	329	032	181	793	912
	Sig. (1-tailed)	.415	.202	.171		.055	.212	.001	.087	.024	.014	.190	.255	.431	.212	.263	.407	.275	.213	.470	.334	.009	.001
HardnessCa	Pearson Correlation	.257	.526	.498	.607	1	.088	.518	137	036	.689	.137	304	364	.088	101	.072	220	.263	305	.228	330	495
	Sig. (1-tailed)	.270	.090	.105	.055		.418	.094	.374	.466	.029	.374	.232	.188	.418	.406	.433	.301	.264	.231	.293	.212	.106
HardnessMg	Pearson Correlation	.038	.127	.695	331	.088	1	408	.745	.525	456	149	.000	.361	1.000	.198	587	.312	.646	.295	231	.491	.500
	Sig. (1-tailed)	.465	.382	.028	.212	.418		.158	.017	.091	.128	.362	.500	.189	.000	.319	.063	.226	.042	.239	.291	.109	.104
Salinity	Pearson Correlation	169	.519	.373	.920	.518	408	1	609	678	.685	243	.000	148	408	.150	.373	202	264	121	.094	963	993
	Sig. (1-tailed)	.344	.094	.181	.001	.094	.158		.055	.032	.030	.281	.500	.364	.158	.361	.182	.316	.264	.388	.412	.000	.000
Fluoride	Pearson Correlation	.590	057	.278	533	137	.745	609	1	.561	515	.333	.000	.269	.745	.063	486	.260	.482	.220	172	.654	.664
*******	Sig. (1-tailed)	.062	.447	.253	.087	.374	.017	.055		.074	.096	.210	.500	.259	.017	.441	.111	.267	.113	.300	.342	.039	.036
Chloride	Pearson Correlation	.217	.226	001	709	036	.525	678	.561	1	417	.370	491	222	.525	520	293	.615	.833	325	.279	.656	.722
TDS	Sig. (1-tailed)	.303	.295	.500	.024	.466	.091	.032	.074		.152	.183	.108	.299	.091	.093	.241	.052	.005	.216	.251	.039	.022
108	Pearson Correlation	.125	.427	.076	.762	.689	456	.685	515	417	1	.114	069	082	456	.200	.073	270	105	026	.272	581	707
DO	Sig. (1-tailed)	.384	.146	.429	.014	.029	.128	.030	.096	.152		.394	.435	.423	.128	.317	.431	.259	.402	.476	.257	.065	.025
DO	Pearson Correlation	.758	.171	343	361	.137	149	243	.333	.370	.114	1	667	269	149	317	.341	162	.241	220	.701	.191	.204
BOD	Sig. (1-tailed)	.015	.343	.203	.190	.374	.362	.281	.210	.183	.394		.035	.259	.362	.222	.204	.350	.283	.300	.026	.325	.314
BOD	Pearson Correlation Sig. (1-tailed)	168	569	.000	.275	304	.000	.000	.000	491	069	667	1	.442	.000	.507	536	057 .447	542	.440	926	.101	.003
EC	Pearson Correlation	.345	.071	.500	074	.232	.500	.500 148	.500	.108	.435	.035	.442	.137	.361	.100	.086	049	.083	.137	261	.406	.174
EC	Sig. (1-tailed)	204 .314	.343	.251	.431	.188	.361	.364	.269	222 .299	082	.259	.137	'	.189			.454	035 .467	.000	.266	.127	.340
TottNitrogen	Pearson Correlation	.038	.127	.695	331	.088	1.000	408	.745	.525	.423 456	149	.000	.361	.189	.001	.071	.454	.646	.000	231	.491	.500
Touvisiogen	Sig. (1-tailed)	.465	.382	.028	.212	.418	.000	.158	.017	.091	.128	.362	.500	.189	'	.319	.063	.226	.042	.295	.291	.109	.104
Nitrate	Pearson Correlation	176	162	.320	.265	101	.198	.150	.063	520	.200	317	.507	.919	.198	.313	430	327	252	.955	289	-,113	138
Temato	Sig. (1-tailed)	.338	.351	.220	.263	.406	.319	.361	.441	.093	.317	.222	.100	.001	.319	· '	.144	.214	.274	.000	.243	.395	.372
Sulphate	Pearson Correlation	015	.070	303	.100	.072	587	.373	486	293	.073	.341	536	568	587	430	1	454	366	473	.552	492	437
,	Sig. (1-tailed)	.486	.435	.233	.407	.433	.063	.182	.111	.241	.431	.204	.086	.071	.063	.144		.129	.186	.118	.078	.108	.140
Ammonia	Pearson Correlation	119	.452	.159	250	220	.312	202	.260	.615	270	162	057	049	.312	327	454	1	.666	250	077	.145	.278
	Sig. (1-tailed)	.389	.130	.354	.275	.301	.226	.316	.267	.052	.259	.350	.447	.454	.226	.214	.129		.036	.275	.428	.366	.253
Phosphate	Pearson Correlation	.122	.657	.449	329	.263	.646	264	.482	.833	105	.241	542	035	.646	252	366	.666	1	161	.363	.269	.346
· ·	Sig. (1-tailed)	.387	.038	.132	.213	.264	.042	.264	.113	.005	.402	.283	.083	.467	.042	.274	.186	.036		.352	.188	.260	.201
Totphosphorus	Pearson Correlation	163	266	.205	032	305	.295	121	.220	325	026	220	.440	.979	.295	.955	473	250	161	1	239	.115	.131
' '	Sig. (1-tailed)	.350	.262	.313	.470	.231	.239	.388	.300	.216	.476	.300	.137	.000	.239	.000	.118	.275	.352		.284	.393	.379
Sodium	Pearson Correlation	.130	.522	160	181	.228	231	.094	172	.279	.272	.701	926	261	231	289	.552	077	.363	239	1	223	122
l	Sig. (1-tailed)	.379	.092	.352	.334	.293	.291	.412	.342	.251	.257	.026	.000	.266	.291	.243	.078	.428	.188	.284		.298	.387
Potassium	Pearson Correlation	.252	534	260	793	330	.491	963	.654	.656	581	.191	.101	.127	.491	113	492	.145	.269	.115	223	1	.963
	Sig. (1-tailed)	.274	.086	.267	.009	.212	.109	.000	.039	.039	.065	.325	.406	.383	.109	.395	.108	.366	.260	.393	.298		.000
ORP	Pearson Correlation	.159	454	275	912	495	.500	993	.664	.722	707	.204	.003	.174	.500	138	437	.278	.346	.131	122	.963	1
	Sig. (1-tailed)	.354	.129	.255	.001	.106	.104	.000	.036	.022	.025	.314	.497	.340	.104	.372	.140	.253	.201	.379	.387	.000	

IJCRT2211407 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d571

Table 4: Comparison of water quality parameters of bore hole water in Pre monsoon and Post monsoon season during 2019

					Sample	code			
			Pre mo	on Season	_		Post moo	n Seasor	1
S.No	Parameters	BPRA19PO	BPRA19PE	BPRA19MU	BPRA19MA	BPON19PO	BPON19PE	BPON19MU	7.3
1	pН	7.8	7.8	7.8	7.9	7.8	7.3	7.9	7.3
2	Turbidity (NTU)	8.1	8.1	8.2	8.9	8.9	8.2	8.1	7
3	Dissolved oxygen (DO) (ppm)	6	6	9	6	6	7	6	6
4	Biological Oxygen Demand (BOD) (ppm)	6.4	6.4	6.3	6.4	6.3	6.4	6.3	8.3
5	Hardness Mg (mg/L)	8	8	8	8	7	8	7	7
6	Sulphate (mg/L)	7.1	0.3	7.5	0.4	7.4	4.4	7.4	6
7	Total Nitrogen (mg/L)	5	5	5	5	5	6	5	5
8	Nitrate (mg/L)	0.9	0.9	0.5	0.4	0.4	0.4	0.4	0.2
9	Ammonia (mg/L)	0.9	0.3	0.9	7.4	0.3	0.1	0.3	0.8
10	Phosphate (mg/L)	0.2	0.3	0.1	0.3	0.1	0.4	0.1	0.1
11	Total Phosphorous (mg/L)	0.1	0.6	0.4	0.1	0.4	11.4	0.4	0.4
12	Fluoride (ppm)	0.8	0.9	0.9	0.9	0.9	0.8	0.9	0.9
13	Chloride (ppm)	182	181	190	181	181	190	180	240
14	Total dissolved solids (TDS)(ppm)	630	631	620	630	621	621	620	630
15	Electrical conductivity (Mics/cm)	531	531	531	540	531	540	530	530
16	Oxidation-Reduction Potential (mV)	739	741	741	742	742	742	740	672
17	Temperature (°C)	29	30	27	31	31	29	28	27
18	Sodium (mg/L)	11.6	11.4	12.1	11.4	11.6	21	11.4	11.4
19	Potassium (mg/L)	19	19	19	18	18	19	19	11.4
20	Alkalinity (mg/L)	191	195	192	192	190	199	190	165
21	Hardness Ca (mg/L)	61	50	61	61	90	70	60	50
22	Salinity (ppm)	111	117	111	110	116	112	110	95

Table 5: Descriptive Statistics of water quality parameters of bore hole water in Pre monsoon and Post monsoon season during 2019

	N	Range	Minimum	Maximum	Mean	Std. Deviation	Variance	Kurl	tosis
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error
Temp	8	4	27	31	29.00	1.604	2.571	-1.478	1.481
pН	8	.6	7.3	7.9	7.700	.2507	.063	145	1.481
Turbidity	8	1.9	7.0	8.9	8.188	.5915	.350	2.116	1.481
Alkalinity	8	34	165	199	189.25	10.250	105.071	6.158	1.481
HardnessCa	8	40	50	90	62.88	12.744	162.411	2.886	1.481
HardnessMg	8	1	7	8	7.63	.518	.268	-2.240	1.481
Salinity	8	22	95	117	110.25	6.714	45.071	4.765	1.481
Fluoride	8	.1	.8	.9	.875	.0463	.002	.000	1.481
Chloride	8	60	180	240	190.63	20.368	414.839	7.029	1.481
TDS	8	11	620	631	625.38	5.236	27.411	-2.721	1.481
DO	8	3	6	9	6.50	1.069	1.143	5.469	1.481
BOD	8	2.0	6.3	8.3	6.600	.6887	.474	7.877	1.481
EC	8	10	530	540	533.00	4.342	18.857	052	1.481
TotNitrogen	8	1.0	5.0	6.0	5.125	.3536	.125	8.000	1.481
Nitrate	8	.7	.2	.9	.513	.2532	.064	289	1.481
Sulphate	8	7.2	.3	7.5	5.063	3.0882	9.537	753	1.481
Ammonia	8	7.3	.1	7.4	1.375	2.4546	6.025	7.611	1.481
Phosphate	8	.3	.1	.4	.200	.1195	.014	-1.204	1.481
Totphosphorus	8	11.3	.1	11.4	1.725	3.9129	15.311	7.956	1.481
Sodium	8	9.6	11.4	21.0	12.738	3.3470	11.203	7.877	1.481
Potassium	8	7.6	11.4	19.0	17.800	2.6252	6.891	7.287	1.481
ORP	8	70	672	742	732.38	24.419	596.268	7.954	1.481
Valid N (listwise)	8								

Figure 3: Cluster Diagram of water quality parameters of bore hole water in Pre monsoon and Post monsoon season during 2019

Figure 4: Dendrogram of water quality parameters of bore hole water in Pre monsoon and Post monsoon season during 2019

Table 6: Pearson Correlation Coefficient (r) of water quality parameters of well water in Pre monsoon and Post monsoon season during 2019

											ni ciations												
		Temp	pН	Turbidity	Alkalinity	HardnessCa	HardnessMg	Salinity	Fluoride	Chloride	TDS	DO	BOD	EC	TotNitrogen	Nitrate	Sulphate	Ammonia	Phosphate	Totphosphoru S	Sodium	Potassium	ORP
Temp	Pearson Correlation	1	.391	.783	.478	.489	.172	.624	.000	590	.221	500	479	.431	.000	.246	534	.436	.447	009	027	.380	.522
	Sig. (1-tailed)		.169	.011	.115	.109	.342	.049	.500	.062	.299	.104	.115	.143	.500	.278	.087	.140	.133	.491	.475	.177	.092
pH	Pearson Correlation	.391	1	.626	.422	.107	.110	.569	.369	739	022	053	662	210	645	.428	068	.330	238	651	635	.595	.632
	Sig. (1-tailed)	.169		.048	.149	.400	.398	.071	.184	.018	.480	.450	.037	.309	.042	.145	.436	.213	.285	.040	.045	.060	.046
Turbidity	Pearson Correlation	.783	.626	1	.724	.661	.263	.771	.039	828	270	.011	814	.434	.009	.144	212	.435	.242	004	.018	.699	.827
	Sig. (1-tailed)	.011	.048		.021	.037	.265	.013	.463	.006	.259	.489	.007	.141	.492	.367	.307	.141	.281	.496	.483	.027	.006
Alkalinity	Pearson Correlation	.478	.422	.724	1	.341	.613	.898	346	901	329	.235	941	.436	.384	.489	251	.046	.560	.381	.400	.960	.960
	Sig. (1-tailed)	.115	.149	.021		.204	.053	.001	.200	.001	.213	.288	.000	.140	.174	.110	.274	.457	.075	.176	.163	.000	.000
HardnessCa	Pearson Correlation	.489	.107	.661	.341	1	246	.461	127	392	586	.016	435	.163	.226	221	.369	107	094	.220	.242	.310	.426
	Sig. (1-tailed)	.109	.400	.037	.204		.278	125	.382	.169	.063	.485	.141	.350	.295	.300	.184	.400	.413	.300	.282	.227	.146
HardnessMg	Pearson Correlation	.172	.110	.263	.613	246	1	.401	447	395	.270	.387	441	.509	.293	.586	502	.306	.693	.280	.314	.526	.487
	Sig. (1-tailed)	.342	.398	.265	.053	.278		.163	.133	.167	.259	.172	.137	.099	.241	.063	.103	.230	.028	.251	.224	.090	.110
Salinity	Pearson Correlation	.624	.569	.771	.898	.461	.401	1	115	915	267	.080	915	.142	.105	.578	208	077	.338	.111	.118	.895	.922
	Sig. (1-tailed)	.049	.071	.013	.001	.125	.163		.393	.001	.261	.426	.001	.369	.402	.067	.310	.428	.206	397	.390	.001	.001
Fluoride	Pearson Correlation	.000	.369	.039	346	127	447	115	1	.140	015	.000	.179	355	655	335	137	.220	516	635	657	282	205
	Sig. (1-tailed)	.500	.184	.463	.200	.382	.133	.393		.370	.486	.500	.336	.194	.039	.209	.373	.300	.095	.045	.038	.249	.313
Chloride	Pearson Correlation	590	739	828	901	392	395	915	.140	1	.261	016	.977	212	012	528	.161	140	288	006	021	951	976
	Sig. (1-tailed)	.062	.018	.006	.001	.169	.167	.001	.370		.266	.485	.000	.307	.488	.089	.351	.370	.245	.494	.480	.000	.000
TDS	Pearson Correlation	.221	022	270	329	586	.270	267	015	.261	.200	523	.408	.019	338	.395	597	.395	.274	347	373	368	366
.50	Sig. (1-tailed)	.299	.480	.259	.213	.063	.259	.261	.486	.266	' I	.092	.158	482	.207	.167	.059	.166	.256	.200	.182	.185	.187
DO	Pearson Correlation	500	053	.011	.235	.016	.387	.080	.000	016	523	.002	213	.031	.189	079	.288	147	112	.195	.254	.244	.194
00	Sig. (1-tailed)	.104	.450	.489	.288	.485	.172	426	.500	.485	.092	'	.306	.471	.327	.426	.245	.364	.396	.322	.272	.280	.322
BOD	Pearson Correlation	479	662	814	941	435	441	915	.179	.977	.408	213	.300	239	117	467	.072	070	278	112	138	981	996
505	Sig. (1-tailed)	.115	.002	.007	.000	.141	.137	.001	.336	.000	.158	.306	' '	.284	.391	.122	.433	.434	.253	.396	.372	.000	.000
EC	Pearson Correlation	.431	210	.434	.436	.163	.509	.142	355	212	.019	.031	239	.204	.651	- 208	545	.595	.798	.631	.639	.223	.304
	Sig. (1-tailed)	.143	.309	.141	.140	.350	.099	.369	.194	.307	.482	.471	.284		.040	.311	.081	.060	.009	.047	.044	.298	.232
TotNitrogen	Pearson Correlation	.000	645	.009	.384	.226	.293	.105	655	012	338	.189	117	.651	.040	180	087	210	.676	.999	.997	.185	.159
Tonanoyen	Sig. (1-tailed)	.500	.042	.492	.174	.220	.241	.402	.039	.488	.207	.327	.391	.040	'	.335	.419	.309	.033	.000	.000	.331	.353
Nitrate	Pearson Correlation	.246	.428	.144	.489	221	.586	.578	335	528	.395	079	467	208	180	.333	239	163	.283	179	174	.559	.475
Ividate	Sig. (1-tailed)	.278	.145	.367	.110	.300	.063	.067	.209	.089	.167		.122	.311	.335	'	.285	.350	.248	.336	.340	.075	.117
Sulphate	Pearson Correlation	534	068	212	251	.369	502	208	137	.161	597	.426	.072	545	087	239	.200	562	728	088	052	085	140
oulphate	Sig. (1-tailed)	.087	.436	.307	.274	.184	.103	.310	.373	.351	.059		.433	.081	.419	.285	'	.074	.020	.418	.451	.421	.370
Ammonia	Pearson Correlation			.435	_			077	.220	140		.245					500	.074	.273		224		
Allillollia	Sig. (1-tailed)	.436	.330		.046	107	.306	l		1	.395	147	070	.595	210	163	562	l '		237	l	013	.108
Phosphate	Pearson Correlation	.140	.213 238	.141	.457	.400	.230	.428	.300	.370	.166	.364	.434 278	.060	.309	.350	728	.273	.257	.286	.653	.488	.399
rnosphate		I				094			516	1	.274	112		.798					1	.669	l	.346	
Tatabasabasas	Sig. (1-tailed)	.133	.285	.281	.075	.413	.028	.206	.095	.245	.256	.396	.253	.009	.033	.248	.020	.257	200	.035	.039	.201	.196
Totphosphorus	Pearson Correlation	009	651	004	.381	.220	.280	.111	635	006	347	.195	112	.631	.999	179	088	237	.669	1	.997	.181	.154
Cadium	Sig. (1-tailed)	.491	.040	.496	.176	.300	.251	.397	.045	.494	.200	.322	.396	.047	.000	.336	.418	.286	.035	0	.000	.334	.358
Sodium	Pearson Correlation	027	635	.018	.400	.242	.314	.118	657	021	373	.254	138	.639	.997	174	052	224	.653	.997	1	.206	.178
Datassium	Sig. (1-tailed)	.475	.045	.483	.163	.282	.224	.390	.038	.480	.182	.272	.372	.044	.000	.340	.451	.297	.039	.000		.313	.337
Potassium	Pearson Correlation	.380	.595	.699	.960	.310	.526	.895	282	951	368	.244	981	.223	.185	.559	085	013	.346	.181	.206	1	.980
	Sig. (1-tailed)	.177	.060	.027	.000	.227	.090	.001	.249	.000	.185	.280	.000	.298	.331	.075	.421	.488	.201	.334	.313		.000
ORP	Pearson Correlation	.522	.632	.827	.960	.426	.487	.922	205	976	366	.194	996	.304	.159	.475	140	.108	.352	.154	.178	.980	1
	Sig. (1-tailed)	.092	.046	.006	.000	.146	.110	.001	.313	.000	.187	.322	.000	.232	.353	.117	.370	.399	.196	.358	.337	.000	1

a. Listwise N=8

Table 7: Comparison of water quality parameters of well water in Pre monsoon and Post monsoon season during 2020

					Sampl	e code			
S.No	Parameters	WPRA20PO	WPRA20PE	WPRA20MU	WPRA20MA	WPON20PO	WPON20PE	WPON20MU	WPON20MA
1	pН	7.5	7.6	6.5	6.4	7.8	7.8	7.8	7.6
2	Turbidity (NTU)	10	11	9	9.1	6.7	6	6.7	8.9
3	Dissolved oxygen (DO) (ppm)	8.5	7.5	6.5	7.5	8	9	9	9
4	Biological Oxygen Demand (BOD) (ppm)	9	6.4	8	8	7	6	5	8
5	Hardness Mg (mg/L)	21	42	40	70	42	61	61	61
6	Sulphate (mg/L)	2.6	4.7	2.5	0.6	0.4	0.8	6	6.1
7	Total Nitrogen (mg/L)	4.7	2.9	4.8	4.8	4.9	4.9	4.2	4.9
8	Nitrate (mg/L)	0.4	0.2	0.3	0.3	0.3	0.2	0.2	0.8
9	Ammonia (mg/L)	0.6	0.4	0.4	0.9	0.8	0.8	0.8	0.7
10	Phosphate (mg/L)	0.9	0.8	0.8	0.8	6	0.6	0.3	0.5
11	Total Phosphorous (mg/L)	0.5	176	0.5	0.9	0.1	1.5	32.1	0.4
12	Fluoride (ppm)	0.4	0.2	0.3	0.4	0.1	0.1	0.1	0.9
13	Chloride (ppm)	180	181	190	192	182	310	360	341
14	Total dissolved solids (TDS)(ppm)	421	282	320	330	415	410	480	468
15	Electrical conductivity (Mics/cm)	422	385	420	420	462	491	471	492
16	Oxidation-Reduction Potential (mV)	571	470	530	560	562	561	570	560
17	Temperature (°C)	28	26	28	28	27	25	28	29
18	Sodium (mg/L)	19.9	12.8	18.3	18.3	33.2	33.1	35.1	32.1
19	Potassium (mg/L)	13.4	18	11.3	11.3	12.9	14.1	12.8	12.4
20	Alkalinity (mg/L)	241	231	240	241	161	219	161	216
21	Hardness Ca (mg/L)	42	31	40	40	61	60	54	59
22	Salinity (ppm)	86	56	85	85	94	92	92	91

Table 5: Descriptive Statistics of water quality parameters of well water in Pre monsoon and Post monsoon season during 2020

	N	Range	Minimum	Maximum	Me	an	Std. Deviation	Variance	Kurt	osis
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic	Statistic	Std. Error
Temp	8	4	25	29	27.38	.460	1.302	1.696	.222	1.481
рH	8	1.4	6.4	7.8	7.375	.2059	.5825	.339	155	1.481
Turbidity	8	5.0	6.0	11.0	8.425	.6261	1.7710	3.136	-1.318	1.481
Alkalinity	8	80	161	241	213.75	12.004	33.953	1152.786	475	1.481
HardnessCa	8	30	31	61	48.38	4.057	11.476	131.696	-1.736	1.481
HardnessMg	8	49	21	70	49.75	5.719	16.175	261.643	314	1.481
Salinity	8	38	56	94	85.13	4.344	12.287	150.982	6.101	1.481
Fluoride	8	.8	.1	.9	.313	.0953	.2696	.073	3.248	1.481
Chloride	8	180	180	360	242.00	28.258	79.927	6388.286	-1.821	1.481
TDS	8	198	282	480	390.75	25.470	72.041	5189.929	-1.350	1.481
DO	8	2.5	6.5	9.0	8.125	.3239	.9161	.839	492	1.481
BOD	8	4.0	5.0	9.0	7.175	.4651	1.3156	1.731	650	1.481
EC	8	107	385	492	445.38	13.802	39.038	1523.982	-1.360	1.481
TotNitrogen	8	2.0	2.9	4.9	4.513	.2445	.6917	.478	5.366	1.481
Nitrate	8	.6	.2	.8	.338	.0706	.1996	.040	5.229	1.481
Sulphate	8	5.7	.4	6.1	2.963	.8373	2.3682	5.608	-1.768	1.481
Ammonia	8	.5	.4	.9	.675	.0675	.1909	.036	-1.085	1.481
Phosphate	8	5.7	.3	6.0	1.338	.6697	1.8943	3.588	7.743	1.481
Totphosphorus	8	32.0	.1	32.1	6.700	4.1935	11.8610	140.683	2.699	1.481
Sodium	8	22.3	12.8	35.1	25.350	3.1308	8.8553	78.417	-2.160	1.481
Potassium	8	6.7	11.3	18.0	13.275	.7554	2.1366	4.565	3.820	1.481
ORP	8	101	470	571	548.00	12.007	33.962	1153.429	4.827	1.481
Valid N (listwise)	8									

Figure 5: Cluster Diagram of water quality parameters of well water in Pre monsoon and Post monsoon season during 2020

Figure 6: Dendrogram of water quality parameters of well water in Pre monsoon and Post monsoon season during 2020

Table 9: Pearson Correlation Coefficient (r) of water quality parameters of well water in Pre monsoon and Post monsoon season during 2020

										C	orrelations												
		Temp	рН	Turbidity	Alkalinity	HardnessCa	HardnessMg	Salinity	Fluoride	Chloride	TDS	DO	BOD	EC	TotNitrogen	Nitrate	Sulphate	Ammonia	Phosphate	Totphosphoru	Sodium	Potassium	ORP
Temp	Pearson Correlation	1	362	.268	.015	020	.005	.309	.676	.106	.324	045	.506	.039	.327	.653	.404	.043	128	055	.009	638	.371
	Sig. (1-tailed)		.189	.261	.486	.481	.495	.228	.033	.402	.217	.458	.100	.463	.215	.040	.161	.460	.381	.449	.491	.044	.183
pH	Pearson Correlation	362	1	384	609	.553	118	.094	207	.456	.593	.756	519	.492	208	.022	.315	.148	.240	.354	.605	.519	.093
	Sig. (1-tailed)	.189		.174	.054	.078	.391	.412	.311	.128	.061	.015	.094	.108	.310	.480	.224	.363	.283	.195	.056	.094	.413
Turbidity	Pearson Correlation	.268	384	1	.692	843	425	754	.427	541	582	473	.564	796	511	.223	.271	657	324	082	871	.338	605
	Sig. (1-tailed)	.261	.174		.029	.004	.147	.015	.146	.083	.065	.118	.072	.009	.098	.297	.258	.038	.217	.424	.002	.207	.056
Alkalinity	Pearson Correlation	.015	609	.692	1	660	188	434	.392	418	600	428	.640	530	051	.145	152	449	548	474	767	.052	331
	Sig. (1-tailed)	.486	.054	.029		.038	.328	.141	.168	.151	.058	.145	.044	.088	.452	.366	.359	.132	.080	.118	.013	.451	.212
HardnessCa	Pearson Correlation	020	.553	843	660	1	.343	.806	.031	.632	.804	.681	296	.958	.608	.292	059	.631	.373	123	.965	332	.674
	Sig. (1-tailed)	.481	.078	.004	.038		.203	.008	.471	.046	.008	.031	.238	.000	.055	.241	.445	.047	.182	.386	.000	.211	.033
HardnessMg	Pearson Correlation	.005	118	425	188	.343	1	.252	.122	.599	.164	.268	435	.468	.157	.056	.069	.632	254	.182	.391	264	.203
Callelle.	Sig. (1-tailed)	.495	.391	.147	.328	.203		.273	.387	.058	.349	.261	.140	.121	.355	.447	.435	.046	.272	.333	.169	.263	.315
Salinity	Pearson Correlation Sig. (1-tailed)	.309	.094	754	434	.806	.252	1	.086	.446	.746	.443	.037	.791	.896	.266	240	.665	.243	273	.777	779	.934
Fluoride	Pearson Correlation	.228	.412 207	.015	.141	.008	.273	.086	.420	.134	.017	.136	.621	.010	.267	.262	.284	.036	314	.257	061	.011	.000
Fidolide	Sig. (1-tailed)	.070	.311	.146	.168	.031	.122	.420	l '	.193	.203	.137	.050	.157	.261	.000	.165	.455	.224	.168	.443	292	.136
Chloride	Pearson Correlation	.106	.456	541	418	.632	.599	.446	.193	.324	.732	.756	536	.800	.160	.276	.554	.400	397	.100	.746	133	.394
Cinonae	Sig. (1-tailed)	.402	.128	.083	.151	.046	.058	.134	.324	l '	.019	.015	.086	.009	.352	.254	.077	.163	.165	.154	.017	.377	.167
TDS	Pearson Correlation	.324	.593	582	600	.804	.164	.746	.203	.732	.013	.848	190	.831	.465	.414	.323	.540	.060	.157	.864	328	.771
	Sig. (1-tailed)	.217	.061	.065	.058	.008	349	.017	.315	.019		.004	.326	.005	.123	.154	.217	.084	.444	.355	.003	.214	.013
DO	Pearson Correlation	045	.756	473	428	.681	.268	.443	.137	.756	.848	1	341	.747	.178	.283	.319	.551	122	.231	.738	.082	.544
	Sig. (1-tailed)	.458	.015	.118	.145	.031	.261	.136	.373	.015	.004		.204	.017	.337	.248	.221	.078	.386	.291	.018	.423	.082
BOD	Pearson Correlation	.506	519	.564	.640	296	435	.037	.621	536	190	341	1	310	.399	.548	246	219	.020	758	466	370	.134
	Sig. (1-tailed)	.100	.094	.072	.044	.238	.140	.465	.050	.086	.326	.204		.227	.164	.080	.278	.301	.481	.015	.122	.183	.376
EC	Pearson Correlation	.039	.492	796	530	.958	.468	.791	.157	.800	.831	.747	310	- 1	.596	.365	.090	.609	.093	061	.947	359	.676
	Sig. (1-tailed)	.463	.108	.009	.088	.000	.121	.010	.355	.009	.005	.017	.227		.060	.187	.416	.054	.413	.443	.000	.191	.033
TotNitrogen	Pearson Correlation	.327	208	511	051	.608	.157	.896	.267	.160	.465	.178	.399	.596	1	.379	458	.522	.218	647	.485	846	.831
	Sig. (1-tailed)	.215	.310	.098	.452	.055	.355	.001	.261	.352	.123	.337	.164	.060		.177	.127	.092	.302	.042	.112	.004	.005
Nitrate	Pearson Correlation	.653	.022	.223	.145	.292	.056	.266	.946	.276	.414	.283	.548	.365	.379	1	.384	.028	087	415	.189	312	.266
	Sig. (1-tailed)	.040	.480	.297	.366	.241	.447	.262	.000	.254	.154	.248	.080	.187	.177		.174	.474	.418	.153	.327	.226	.262
Sulphate	Pearson Correlation	.404	.315	.271	152	059	.069	240	.397	.554	.323	.319	246	.090	458	.384	1	312	490	.627	.095	.247	219
	Sig. (1-tailed)	.161	.224	.258	.359	.445	.435	.284	.165	.077	.217	.221	.278	.416	.127	.174		.226	.109	.048	.411	.278	.301
Ammonia	Pearson Correlation	.043	.148	657	449	.631	.632	.665	049	.400	.540	.551	219	.609	.522	.028	312	1	.216	037	.638	433	.745
	Sig. (1-tailed)	.460	.363	.038	.132	.047	.046	.036	.455	.163	.084	.078	.301	.054	.092	.474	.226		.303	.465	.044	.142	.017
Phosphate	Pearson Correlation	128	.240	324	548	.373	254	.243	314	397	.060	122	.020	.093	.218	087	490	.216	1	284	.271	057	.129
Totphosphorus	Sig. (1-tailed) Pearson Correlation	.381	.283	.217	.080	.182	.272	.281	.224	.165	.444	.386	.481 758	.413	.302	.418	.109	.303	201	.248	.258	.447	.381
Totphosphorus	Sig. (1-tailed)	055 .449	.354	082	474	123	.182	273	393 .168	.414	.157	.231	.015	061	647 .042	415	.627	037	284	1	.129	.372	223 .298
Sodium	Pearson Correlation	.009	.195	.424 871	767	.965	.333	.257	061	.746	.355	.738	466	.443	.042	.153	.048	.465	.248	.129	.381	.182	.666
00010111	Sig. (1-tailed)	.491	.056	.002	.013	.000	.169	.012	.443	.017	.003	.018	.122	.000	.112	.327	.411	.044	.258	.129	'	.238	.036
Potassium	Pearson Correlation	638	.519	.338	.052	332	264	779	292	133	328	.018	370	359	846	312	.247	433	057	.372	296	.230	727
	Sig. (1-tailed)	.044	.094	.207	.451	.211	.263	.011	.241	.377	.214	.423	.183	.191	.004	.226	.278	.142	.447	.182	.238		.020
ORP	Pearson Correlation	.371	.093	605	331	.674	.203	.934	.136	.394	.771	.544	.134	.676	.831	.266	219	.745	.129	223	.666	727	1
	Sig. (1-tailed)	.183	.413	.056	.212	.033	.315	.000	.374	.167	.013	.082	.376	.033	.005	.262	.301	.017	.381	.298	.036	.020	ı 1
a. Listwise N																							-

IJCRT2211407 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d577

Table 10: Comparison of water quality parameters of bore hole waterin Pre monsoon and Post monsoon season during 2020

Parameters pH	BPRA20PO		on Season			Post mo	on Seaso	n
	PRA20PO	20PE	TQ.					
pH		BPRA20PE	BPRA20MU	BPRA20MA	BPON20PO	BPON20PE	BPON20MU	BPON20MA
	7.6	7.5	7.4	7.7	7.1	7.1	7.1	7.8
Turbidity (NTU)	11	10	11	11.1	6	6.7	6	8.1
Dissolved oxygen (DO)	7.5	8.5	7.5	6	9	8	6	7
Biological Oxygen Demand (BOD)	6.5	9	2.3	8.3	6.3	6.2	5.4	6.8
Hardness Mg (mg/L)	31	21	20	40	61	42	42	45
Sulphate (mg/L)	4.7	2.6	4.8	0.5	0.6	0.5	6.1	8
Total Nitrogen (mg/L)	2.9	4.7	2.8	2.8	4.8	4.6	4.9	4.2
Nitrate (mg/L)	0.2	0.4	0.1	0.1	0.1	0.1	0.3	0.1
Ammonia (mg/L)	0.4	0.6	0.3	0.8	0.9	0.1	10.3	1.3
Phosphate (mg/L)	0.8	0.7	0.7	0.6	7.1	0.5	0.8	0.3
Total Phosphorous (mg/L)	0.8	0.5	0.9	0.9	0.9	0.8	31.1	0.9
Fluoride (ppm)	0.2	0.4	0.2	0.3	0.8	0.2	0.8	0.3
Chloride (ppm)	182	180	170	171	170	370	390	390
Total dissolved solids (TDS)(ppm)	321	321	380	240	370	360	360	492
Electrical conductivity (Mics/cm)	385	422	375	395	592	581	559	651
Oxidation-Reduction Potential (mV)	461	560	461	461	692	621	681	640
Temperature (°C)	27	27	29	29	28	27	30	30
Sodium (mg/L)	17.9	19.2	17.5	17.5	35.1	31.1	32.1	21.8
Potassium (mg/L)	12.9	13.3	12.8	12.3	11.8	15	18	71.1
Alkalinity (mg/L)	231	241	230	291	221	161	219	181
Hardness Ca (mg/L)	31	42	30	50	54	54	40	60
Salinity (ppm)	56	86	55	66	74	75	52	74
	Dissolved oxygen (DO) (ppm) Biological Oxygen Demand (BOD) (ppm) Hardness Mg (mg/L) Sulphate (mg/L) Total Nitrogen (mg/L) Nitrate (mg/L) Ammonia (mg/L) Phosphate (mg/L) Total Phosphorous (mg/L) Fluoride (ppm) Chloride (ppm) Total dissolved solids (TDS)(ppm) Electrical conductivity (Mics/cm) Oxidation-Reduction Potential (mV) Temperature (°C) Sodium (mg/L) Alkalinity (mg/L) Hardness Ca (mg/L)	Dissolved oxygen (DO) (ppm) Biological Oxygen Demand (BOD) (ppm) Hardness Mg (mg/L) 31 Sulphate (mg/L) 4.7 Total Nitrogen (mg/L) 2.9 Nitrate (mg/L) 0.2 Ammonia (mg/L) 0.4 Phosphate (mg/L) 0.8 Total Phosphorous (mg/L) Fluoride (ppm) 0.2 Chloride (ppm) 182 Total dissolved solids (TDS)(ppm) Electrical conductivity (Mics/cm) Oxidation-Reduction Potential (mV) Temperature (°C) 27 Sodium (mg/L) 12.9 Alkalinity (mg/L) 31 Hardness Ca (mg/L) 31	Dissolved oxygen (DO) (ppm) 7.5 8.5 Biological Oxygen Demand (BOD) (ppm) 6.5 9 Hardness Mg (mg/L) 31 21 Sulphate (mg/L) 4.7 2.6 Total Nitrogen (mg/L) 2.9 4.7 Nitrate (mg/L) 0.2 0.4 Ammonia (mg/L) 0.4 0.6 Phosphate (mg/L) 0.8 0.7 Total Phosphorous (mg/L) 0.8 0.5 Fluoride (ppm) 0.2 0.4 Chloride (ppm) 182 180 Total dissolved solids (TDS)(ppm) 321 321 Electrical conductivity (Mics/cm) 385 422 Oxidation-Reduction Potential (mV) 461 560 Temperature (°C) 27 27 Sodium (mg/L) 17.9 19.2 Potassium (mg/L) 12.9 13.3 Alkalinity (mg/L) 231 241 Hardness Ca (mg/L) 31 42	Dissolved oxygen (DO) (ppm) 7.5 8.5 7.5 Biological Oxygen Demand (BOD) (ppm) 6.5 9 2.3 Hardness Mg (mg/L) 31 21 20 Sulphate (mg/L) 4.7 2.6 4.8 Total Nitrogen (mg/L) 2.9 4.7 2.8 Nitrate (mg/L) 0.2 0.4 0.1 Ammonia (mg/L) 0.4 0.6 0.3 Phosphate (mg/L) 0.8 0.7 0.7 Total Phosphorous (mg/L) 0.8 0.5 0.9 Fluoride (ppm) 0.2 0.4 0.2 Chloride (ppm) 182 180 170 Total dissolved solids (TDS)(ppm) 321 321 380 TOTOS)(ppm) 385 422 375 (Mics/cm) 461 560 461 Potential (mV) 27 27 29 Sodium (mg/L) 17.9 19.2 17.5 Potassium (mg/L) 12.9 13.3 12.8 Alkalinity (mg/L) 231 241 230 Hardness Ca (mg/L) 3	Dissolved oxygen (DO) (ppm) 7.5 (ppm) 8.5 7.5 (ppm) 6.5 (ppm) Biological Oxygen Demand (BOD) (ppm) 6.5 (ppm) 9 (ppm) 2.3 (ppm) 8.3 (ppm) Hardness Mg (mg/L) 31 (ppm) 21 (ppm) 20 (ppm) 40 (ppm) Sulphate (mg/L) 4.7 (ppm) 2.6 (ppm) 4.8 (ppm) 0.5 (ppm) Total Nitrogen (mg/L) 0.2 (ppm) 0.4 (ppm) 0.1 (ppm) 0.1 (ppm) Ammonia (mg/L) 0.4 (ppm) 0.6 (ppm) 0.3 (ppm) 0.8 (ppm) Phosphate (mg/L) 0.8 (ppm) 0.7 (ppm) 0.6 (ppm) 0.8 (ppm) Total Phosphorous (mg/L) 0.8 (ppm) 0.5 (ppm) 0.9 (ppm) 0.9 (ppm) Thuoride (ppm) 0.8 (ppm) 0.5 (ppm) 0.9 (ppm) 0.9 (ppm) 0.9 (ppm) Total Phosphorous (mg/L) 0.8 (ppm) 0.7 (ppm) 0.7 (ppm) 0.9 (ppm) 0.9 (ppm) Total Phosphorous (mg/L) 0.8 (ppm) 0.2 (ppm) 0.9 (ppm) 0.9 (ppm) Total Phosphorous (mg/L) 0.2 (ppm) 0.4 (ppm) 0.9 (ppm) 0.9 (ppm) <	Dissolved oxygen (DO) (ppm) 7.5 (ppm) 8.5 7.5 (ppm) 6 9 Biological Oxygen Demand (BOD) (ppm) 6.5 (ppm) 9 2.3 (ppm) 8.3 (ppm) 6.3 (ppm) Hardness Mg (mg/L) 31 (ppm) 21 (ppm) 20 (ppm) 40 (ppm) 61 (ppm) Sulphate (mg/L) 4.7 (ppm) 2.6 (ppm) 4.8 (ppm) 0.5 (ppm) 0.6 (ppm) 0.6 (ppm) 0.1 (ppm) 0.1 (ppm) 0.1 (ppm) 0.1 (ppm) 0.1 (ppm) 0.1 (ppm) 0.2 (ppm) 0.3 (ppm) 0.9 (ppm) <	Dissolved oxygen (DO) (ppm) 7.5 8.5 7.5 6 9 8 Biological Oxygen Demand (BOD) (ppm) 6.5 9 2.3 8.3 6.3 6.2 Hardness Mg (mg/L) 31 21 20 40 61 42 Sulphate (mg/L) 4.7 2.6 4.8 0.5 0.6 0.5 Total Nitrogen (mg/L) 2.9 4.7 2.8 2.8 4.8 4.6 Nitrate (mg/L) 0.2 0.4 0.1 0.1 0.1 0.1 0.1 Ammonia (mg/L) 0.4 0.6 0.3 0.8 0.9 0.1 Phosphate (mg/L) 0.8 0.7 0.7 0.6 7.1 0.5 Total Phosphorous (mg/L) 0.8 0.5 0.9 0.9 0.9 0.8 Chloride (ppm) 182 180 170 171 170 370 Total dissolved solids (TDS)(ppm) 321 321 380 240 370 360	Dissolved oxygen (DO) (ppm) 7.5 8.5 7.5 6 9 8 6 Biological Oxygen (ppm) 6.5 9 2.3 8.3 6.3 6.2 5.4 Demand (BOD) (ppm) 31 21 20 40 61 42 42 Sulphate (mg/L) 4.7 2.6 4.8 0.5 0.6 0.5 6.1 Total Nitrogen (mg/L) 2.9 4.7 2.8 2.8 4.8 4.6 4.9 Nitrate (mg/L) 0.2 0.4 0.1 0.1 0.1 0.1 0.1 0.3 Ammonia (mg/L) 0.4 0.6 0.3 0.8 0.9 0.1 10.3 Phosphate (mg/L) 0.8 0.7 0.7 0.6 7.1 0.5 0.8 Total Phosphorous (mg/L) 0.8 0.5 0.9 0.9 0.9 0.8 31.1 Fluoride (ppm) 182 180 170 171 170 370 390

Table 11: Descriptive Statistics of water quality parameters of bore hole water in Pre monsoon and post monsoon season during 2020

	N	Range	Minimum	Maximum	Me	an	Std. Deviation	Variance	Kurl	tosis
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic	Statistic	Std. Error
Temp	8	3	27	30	28.38	.460	1.302	1.696	-1.922	1.481
рH	8	.7	7.1	7.8	7.413	.1008	.2850	.081	-1.821	1.481
Turbidity	8	5.1	6.0	11.1	8.738	.8124	2.2978	5.280	-2.246	1.481
Alkalinity	8	130	161	291	221.88	13.809	39.058	1525.554	.919	1.481
HardnessCa	8	30	30	60	45.13	3.934	11.128	123.839	-1.438	1.481
HardnessMg	8	41	20	61	37.75	4.773	13.499	182.214	.012	1.481
Salinity	8	34	52	86	67.25	4.254	12.033	144.786	-1.237	1.481
Fluoride	8	.6	.2	.8	.400	.0906	.2563	.066	438	1.481
Chloride	8	220	170	390	252.88	38.289	108.298	11728.411	-2.188	1.481
TDS	8	252	240	492	355.50	25.073	70.916	5029.143	2.262	1.481
DO	8	3.0	6.0	9.0	7.438	.3831	1.0836	1.174	943	1.481
BOD	8	6.7	2.3	9.0	6.350	.7119	2.0135	4.054	2.060	1.481
EC	8	276	375	651	495.00	39.430	111.526	12438.000	-2.164	1.481
TotNitrogen	8	2.1	2.8	4.9	3.963	.3386	.9576	.917	-2.186	1.481
Nitrate	8	.3	.1	.4	.175	.0412	.1165	.014	.620	1.481
Sulphate	8	7.5	.5	8.0	3.475	1.0120	2.8624	8.194	-1.337	1.481
Ammonia	8	10.2	.1	10.3	1.838	1.2162	3.4401	11.834	7.713	1.481
Phosphate	8	6.8	.3	7.1	1.438	.8111	2.2941	5.263	7.875	1.481
Totphosphorus	8	30.6	.5	31.1	4.600	3.7860	10.7085	114.671	7.996	1.481
Sodium	8	17.6	17.5	35.1	24.025	2.6350	7.4529	55.545	-1.855	1.481
Potassium	8	59.3	11.8	71.1	20.900	7.2054	20.3800	415.343	7.772	1.481
ORP	8	231	461	692	572.13	35.459	100.294	10058.982	-2.083	1.481
Valid N (listwise)	8									

Figure 7: Cluster Diagram of water quality parameters of bore hole water in Pre monsoon and Post monsoon season during 2020 IJCR

Figure 8: Dendrogram water quality parameters of bore hole water in Pre monsoon and Post monsoon season during 2020

Table 12: Pearson Correlation Coefficient (r) of water quality parameters of bore hole water in Pre monsoon and Post monsoon season during 2020

																				100			
										Co	orrelations ^a												
		Temp	pН	Turbidity	Alkalinity	HardnessCa	HardnessMg	Salinity	Fluoride	Chloride	TDS	DO	BOD	EC	TotNitrogen	Nitrate	Sulphate	Ammonia	Phosphate	Totphosphoru s	Sodium	Potassium	ORP
Temp	Pearson Correlation	1	.178	172	.063	.174	.217	417	.300	.416	.395	690	313	.312	033	212	.585	.564	134	.511	.037	.535	.225
	Sig. (1-tailed)		.337	.342	.441	.340	.303	.152	.236	.153	.166	.029	.225	.226	.469	.307	.064	.073	.375	.098	.465	.086	.296
pH	Pearson Correlation	.178	1	.717	.353	.022	333	.091	567	197	.018	321	.350	319	584	075	.358	390	466	443	835	.504	564
	Sig. (1-tailed)	.337		.023	.196	.479	.210	.416	.071	.320	.483	.219	.198	.221	.064	.430	.192	.170	.122	.136	.005	.101	.073
Turbidity	Pearson Correlation	172	.717	1	.616	539	736	151	694	636	427	171	.058	872	854	.031	.033	496	465	483	964	163	961
	Sig. (1-tailed)	.342	.023		.052	.084	.019	.360	.028	.045	.146	.343	.446	.002	.003	.471	.470	.105	.123	.113	.000	.350	.000
Alkalinity	Pearson Correlation	.063	.353	.616	1	367	260	194	.063	724	755	309	.268	727	525	.191	267	018	.027	031	503	459	583
	Sig. (1-tailed)	.441	.196	.052		.186	.267	.322	.441	.021	.015	.228	.261	.021	.091	.325	.261	.483	.475	.471	.102	.127	.064
HardnessCa	Pearson Correlation	.174	.022	539	367	1	.720	.626	.180	.441	.333	.090	.447	.774	.488	372	212	122	.261	183	.439	.533	.601
	Sig. (1-tailed)	.340	.479	.084	.186		.022	.048	.335	.137	.210	.416	.133	.012	.110	.182	.307	.387	.266	.332	.138	.087	.058
HardnessMg	Pearson Correlation	.217	333	736	260	.720	1	.132	.582	.306	.221	.067	.149	.749	.450	441	219	.179	.667	.134	.751	.218	.699
	Sig. (1-tailed)	.303	.210	.019	.267	.022		.377	.065	.230	.299	.437	.363	.016	.132	.137	.301	.335	.035	.376	.016	.302	.027
Salinity	Pearson Correlation	417	.091	151	194	.626	.132	1	037	029	.096	.593	.656	.305	.488	.148	393	481	.189	519	.092	.194	.297
	Sig. (1-tailed)	.152	.416	.360	.322	.048	.377		.465	.472	.411	.061	.039	.232	.110	.363	.168	.114	.327	.094	.414	.322	.238
Fluoride	Pearson Correlation	.300	567	694	.063	.180	.582	037	- 1	.121	.052	.051	.047	.438	.652	.287	033	.666	.649	.631	.722	125	.725
	Sig. (1-tailed)	.236	.071	.028	.441	.335	.065	.465		.388	.451	.452	.456	.139	.040	.245	.469	.036	.041	.047	.022	.384	.021
Chloride	Pearson Correlation	.416	197	636	724	.441	.306	029	.121	1	.577	353	072	.750	.523	017	.452	.524	341	.513	.456	.585	.619
	Sig. (1-tailed)	.153	.320	.045	.021	.137	.230	.472	.388		.067	.195	.433	.016	.092	.484	.130	.091	.204	.097	.128	.064	.051
TDS	Pearson Correlation	.395	.018	427	755	.333	.221	.096	.052	.577	1	.163	365	.692	.355	223	.660	.069	.040	.029	.242	.792	.524
	Sig. (1-tailed)	.166	.483	.146	.015	.210	.299	.411	.451	.067		.350	.187	.029	.194	.298	.037	.436	.462	.473	.282	.010	.091
DO	Pearson Correlation	690	321	171	309	.090	.067	.593	.051	353	.163	1	.051	.108	.349	.042	387	551	.579	540	.250	207	.212
	Sig. (1-tailed)	.029	.219	.343	.228	.416	.437	.061	.452	.195	.350		.453	.399	.199	.460	.171	.078	.066	.083	.275	.311	.307
BOD	Pearson Correlation	313	.350	.058	.268	.447	.149	.656	.047	072	365	.051	1	.046	.246	.378	326	150	023	197	098	.074	.070
	Sig. (1-tailed)	.225	.198	.446	.261	.133	.363	.039	.456	.433	.187	.453		.457	.279	.178	.215	.362	.478	.320	.409	.430	.435
EC	Pearson Correlation	.312	319	872	727	.774	.749	.305	.438	.750	.692	.108	.046	1	.738	221	.182	.281	.305	.235	.741	.599	.906
	Sig. (1-tailed)	.226	.221	.002	.021	.012	.016	.232	.139	.016	.029	.399	.457		.018	.299	.333	.250	.231	.288	.018	.058	.001
TotNitrogen	Pearson Correlation	033	584	854	525	.488	.450	.488	.652	.523	.355	.349	.246	.738	1	.387	042	.413	.341	.391	.780	.147	.918
	Sig. (1-tailed)	.469	.064	.003	.091	.110	.132	.110	.040	.092	.194	.199	.279	.018		.172	.461	.155	.204	.169	.011	.364	.001
Nitrate	Pearson Correlation	212	075	.031	.191	372	441	.148	.287	017	223	.042	.378	221	.387	1	.165	.420	221	.423	073	220	.086
	Sig. (1-tailed)	.307	.430	.471	.325	.182	.137	.363	.245	.484	.298	.460	.178	.299	.172		.348	.150	.300	.148	.432	.300	.420
Sulphate	Pearson Correlation	.585	.358	.033	267	212	219	393	033	.452	.660	387	326	.182	042	.165	1	.406	412	.372	230	.673	.080
	Sig. (1-tailed)	.064	.192	.470	.261	.307	.301	.168	.469	.130	.037	.171	.215	.333	.461	.348		.159	.155	.182	.292	.034	.425
Ammonia	Pearson Correlation	.564	390	496	018	122	.179	481	.666	.524	.069	551	150	.281	.413	.420	.406	1	084	.994	.437	.019	.476
	Sig. (1-tailed)	.073	.170	.105	.483	.387	.335	.114	.036	.091	.436	.078	.362	.250	.155	.150	.159		.422	.000	.139	.482	.117
Phosphate	Pearson Correlation	134	466	465	.027	.261	.667	.189	.649	341	.040	.579	023	.305	.341	221	412	084	1	109	.595	236	.460
	Sig. (1-tailed)	.375	.122	.123	.475	.266	.035	.327	.041	.204	.462	.066	.478	.231	.204	.300	.155	.422		.398	.060	.286	.126
Totphosphorus	Pearson Correlation	.511	443	483	031	183	.134	519	.631	.513	.029	540	197	.235	.391	.423	.372	.994	109	1	.440	054	.439
	Sig. (1-tailed)	.098	.136	.113	.471	.332	.376	.094	.047	.097	.473	.083	.320	.288	.169	.148	.182	.000	.398		.138	.449	.138
Sodium	Pearson Correlation	.037	835	964	503	.439	.751	.092	.722	.456	.242	.250	098	.741	.780	073	230	.437	.595	.440	1	078	.877
	Sig. (1-tailed)	.465	.005	.000	.102	.138	.016	.414	.022	.128	.282	.275	.409	.018	.011	.432	.292	.139	.060	.138		.427	.002
Potassium	Pearson Correlation	.535	.504	163	459	.533	.218	.194	125	.585	.792	207	.074	.599	.147	220	.673	.019	236	054	078	1	.318
	Sig. (1-tailed)	.086	.101	.350	.127	.087	.302	.322	.384	.064	.010	.311	.430	.058	.364	.300	.034	.482	.286	.449	.427		.221
ORP	Pearson Correlation	.225	564	961	583	.601	.699	.297	.725	.619	.524	.212	.070	.906	.918	.086	.080	.476	.460	.439	.877	.318	1
	Sig. (1-tailed)	.296	.073	.000	.064	.058	.027	.238	.021	.051	.091	.307	.435	.001	.001	.420	.425	.117	.126	.138	.002	.221	

CONCLUSION

The physico-chemical analysis of well and bore hole water samples in and around the villages from Pozhikkarai to Manavalakurichi of Kanyakumari District was done. Water samples from well and bore hole in four sites namely Pozhikkarai, Periyakadu, Muttom, Manavalakurichi were collected in pre monsoon and post monsoon seasons during 2019 and 2020 were carried out. The statistical assessment is also carried out for the Physico-chemical parameters. Most of the parameters are well within the permissible limits. It is concluded that from the results of the present study, it may be said that the water from well and bore hole in and around the villages from Pozhikkarai to Manavalakurichi of Kanyakumari District collected in pre monsoon and post monsoon seasons during 2019 ad 2020 fits for domestic purpose. Statistical analysis results showed that the CA technique is useful in classification of water samples in the study region and the number of parameters. The application of cluster analysis proved that one major group of similarity between twenty two physicochemical parameters are formed in the water samples of well and bore hole in and around the villages namely Pozhikarai, Periyakadu, Muttom, Manavalakurichi.

ACKNOWLEDGEMENT

The authors thank the concerned authorities of Manonmaniam Sundaranar University, Tirunelveli.

REFERENCES

- [1]. WHO, (2004). Guidelines for Drinking Water quality (Addendum). Geneva.
- [2]. Cunningham, S. (1999). Environmental Science; A Global concern, 5th edition, the McGraw-Hill Companies, USA, pp 439 440, 451.
- [3]. Buchholz, A.,R. (1993). Principles of Environmental Management. 2nd edition. The greening of Business. Pp 179 187
- [4]. Cairncross, S. and Cliff, J.L. (1987). Water use and health in Mireda, Mozambique. Trans. Royal Soc. Trop. Med. Hyg. 81: 51 54
- [5]. Zoetman, B.C.T. (1980). Sensory assessment of water quality. Pergamon Press, Oxford.
- [6]. Crain, G.F. (1984). Health aspect of ground water pollution. In Ground water Pollution Microbiology ed. Bilton, G. and Gerba, C.P. Florida: Kneger Publishing Company pp: 135 – 179.
- [7]. Pye VI and Patrick R (1983). Ground water contamination in the United States, Science 221: 713-718
- [8]. American Public Health Association (APHA) 1998. Standard methods for the Examinations of water and waste water, 17th Edn; Washingdon, DC
- [9]. WHO, 1984. Guideline for drinking water quality Genewa.
- [10]. ISI, 1964. Indian standard specification for drinking water ISI 10500

- [11]. M.K. Gupta, Anjani Gupta, G.S. Gupta, Rajesh Kr. Dubey, International Journal of Innovative Research in Science, Engineering and Technology. 3, 3, 2014, PP 10220-10229.
- [12]. A papaioannu, K. KAkavas, P. Plageras, A. Minas, Z. Roupa, A.G. Paliatsos, P.T. Nastos and A. Minas, Multivariate Statistical Interpretation of Physical, Chemical and Microbiological Data of Potable water in the context of public Health. 14, 2007, PP 347-352.
- [13]. M. Jamuna, Statistical Analysis of Ground water quality parameters in Erode District, Tamilnadu International Journal of Recent Technology and Engineering 2277-3878, 7, (4), 2018.
- [14]. Ece Kilic, Nebil Yucel. Determination of Spatial and Temporal changes in water quality at AsiRiver using Multivariate Statistical Techniques. Trk. J. ish & Aquat.Sci.19), 727-737,2018.
- [15]. Aydin Uncumusaoglu, Statistical assessment of water quality parameters for pollution source identification in Bektas Pond. Globel Nest. 20 (1), 151-160, 2018.

